Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
EBioMedicine ; 91: 104563, 2023 May.
Article in English | MEDLINE | ID: covidwho-2299960

ABSTRACT

BACKGROUND: The Omicron variant has challenged the control of the COVID-19 pandemic due to its immuno-evasive properties. The administration of a booster dose of a SARS-CoV-2 vaccine showed positive effects in the immunogenicity against SARS-CoV-2, effect that is even enhanced after the administration of a second booster. METHODS: During a phase-3 clinical trial, we evaluated the effect of a second booster of CoronaVac®, an inactivated vaccine administered 6 months after the first booster, in the neutralization of SARS-CoV-2 (n = 87). In parallel, cellular immunity (n = 45) was analyzed in stimulated peripheral mononuclear cells by flow cytometry and ELISPOT. FINDINGS: Although a 2.5-fold increase in neutralization of the ancestral SARS-CoV-2 was observed after the second booster when compared with prior its administration (Geometric mean units p < 0.0001; Geometric mean titer p = 0.0002), a poor neutralization against the Omicron variant was detected. Additionally, the activation of specific CD4+ T lymphocytes remained stable after the second booster and, importantly, equivalent activation of CD4+ T lymphocytes against the Omicron variant and the ancestral SARS-CoV-2 were found. INTERPRETATION: Although the neutralizing response against the Omicron variant after the second booster of CoronaVac® was slightly increased, these levels are far from those observed against the ancestral SARS-CoV-2 and could most likely fail to neutralize the virus. In contrast, a robust CD4+T cell response may confer protection against the Omicron variant. FUNDING: The Ministry of Health, Government of Chile, the Confederation of Production and Commerce, Chile and SINOVAC Biotech.NIHNIAID. The Millennium Institute on Immunology and Immunotherapy.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Vaccines, Inactivated , Antibodies, Viral , Antibodies, Neutralizing
2.
mBio ; : e0131122, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2119438

ABSTRACT

Multiple vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been evaluated in clinical trials. However, trials addressing the immune response in the pediatric population are scarce. The inactivated vaccine CoronaVac has been shown to be safe and immunogenic in a phase 1/2 clinical trial in a pediatric cohort in China. Here, we report interim safety and immunogenicity results of a phase 3 clinical trial for CoronaVac in healthy children and adolescents in Chile. Participants 3 to 17 years old received two doses of CoronaVac in a 4-week interval until 31 December 2021. Local and systemic adverse reactions were registered for volunteers who received one or two doses of CoronaVac. Whole-blood samples were collected from a subgroup of 148 participants for humoral and cellular immunity analyses. The main adverse reaction reported after the first and second doses was pain at the injection site. Four weeks after the second dose, an increase in neutralizing antibody titer was observed in subjects relative to their baseline visit. Similar results were found for activation of specific CD4+ T cells. Neutralizing antibodies were identified against the Delta and Omicron variants. However, these titers were lower than those for the D614G strain. Importantly, comparable CD4+ T cell responses were detected against these variants of concern. Therefore, CoronaVac is safe and immunogenic in subjects 3 to 17 years old, inducing neutralizing antibody secretion and activating CD4+ T cells against SARS-CoV-2 and its variants. (This study has been registered at ClinicalTrials.gov under no. NCT04992260.) IMPORTANCE This work evaluated the immune response induced by two doses of CoronaVac separated by 4 weeks in healthy children and adolescents in Chile. To date, few studies have described the effects of CoronaVac in the pediatric population. Therefore, it is essential to generate knowledge regarding the protection of vaccines in this population. Along these lines, we reported the anti-S humoral response and cellular immune response to several SARS-CoV-2 proteins that have been published and recently studied. Here, we show that a vaccination schedule consisting of two doses separated by 4 weeks induces the secretion of neutralizing antibodies against SARS-CoV-2. Furthermore, CoronaVac induces the activation of CD4+ T cells upon stimulation with peptides from the proteome of SARS-CoV-2. These results indicate that, even though the neutralizing antibody response induced by vaccination decreases against the Delta and Omicron variants, the cellular response against these variants is comparable to the response against the ancestral strain D614G, even being significantly higher against Omicron.

3.
MMWR Morb Mortal Wkly Rep ; 71(43): 1353-1358, 2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2091065

ABSTRACT

The COVID-19 pandemic has affected influenza virus transmission, with historically low activity, atypical timing, or altered duration of influenza seasons during 2020-22 (1,2). Community mitigation measures implemented since 2020, including physical distancing and face mask use, have, in part, been credited for low influenza detections globally during the pandemic, compared with those during prepandemic seasons (1). Reduced population exposure to natural influenza infections during 2020-21 and relaxed community mitigation measures after introduction of COVID-19 vaccines could increase the possibility of severe influenza epidemics. Partners in Chile and the United States assessed Southern Hemisphere influenza activity and estimated age-group-specific rates of influenza-attributable hospitalizations and vaccine effectiveness (VE) in Chile in 2022. Chile's most recent influenza season began in January 2022, which was earlier than during prepandemic seasons and was associated predominantly with influenza A(H3N2) virus, clade 3C.2a1b.2a.2. The cumulative incidence of influenza-attributable pneumonia and influenza (P&I) hospitalizations was 5.1 per 100,000 person-years during 2022, which was higher than that during 2020-21 but lower than incidence during the 2017-19 influenza seasons. Adjusted VE against influenza A(H3N2)-associated hospitalization was 49%. These findings indicate that influenza activity continues to be disrupted after emergence of SARS-CoV-2 in 2020. Northern Hemisphere countries might benefit from preparing for an atypical influenza season, which could include early influenza activity with potentially severe disease during the 2022-23 season, especially in the absence of prevention measures, including vaccination. Health authorities should encourage all eligible persons to seek influenza vaccination and take precautions to reduce transmission of influenza (e.g., avoiding close contact with persons who are ill).


Subject(s)
COVID-19 , Influenza A virus , Influenza Vaccines , Influenza, Human , United States , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Influenza A Virus, H3N2 Subtype/genetics , Incidence , Pandemics/prevention & control , COVID-19 Vaccines , Chile/epidemiology , Vaccine Efficacy , SARS-CoV-2 , Vaccination , Influenza B virus
4.
Clin Infect Dis ; 75(1): e792-e804, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1708316

ABSTRACT

BACKGROUND: The development of effective vaccines against coronavirus disease 2019 is a global priority. CoronaVac is an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine with promising safety and immunogenicity profiles. This article reports safety and immunogenicity results obtained for healthy Chilean adults aged ≥18 years in a phase 3 clinical trial. METHODS: Volunteers randomly received 2 doses of CoronaVac or placebo, separated by 2 weeks. A total of 434 volunteers were enrolled, 397 aged 18-59 years and 37 aged ≥60 years. Solicited and unsolicited adverse reactions were registered from all volunteers. Blood samples were obtained from a subset of volunteers and analyzed for humoral and cellular measures of immunogenicity. RESULTS: The primary adverse reaction in the 434 volunteers was pain at the injection site, with a higher incidence in the vaccine than in the placebo arm. Adverse reactions observed were mostly mild and local. No severe adverse events were reported. The humoral evaluation was performed on 81 volunteers. Seroconversion rates for specific anti-S1-receptor binding domain (RBD) immunoglobulin G (IgG) were 82.22% and 84.44% in the 18-59 year age group and 62.69% and 70.37% in the ≥60 year age group, 2 and 4 weeks after the second dose, respectively. A significant increase in circulating neutralizing antibodies was detected 2 and 4 weeks after the second dose. The cellular evaluation was performed on 47 volunteers. We detected a significant induction of T-cell responses characterized by the secretion of interferon-γ (IFN-γ) upon stimulation with Mega Pools of peptides from SARS-CoV-2. CONCLUSIONS: Immunization with CoronaVac in a 0-14 schedule in Chilean adults aged ≥18 years is safe, induces anti-S1-RBD IgG with neutralizing capacity, activates T cells, and promotes the secretion of IFN-γ upon stimulation with SARS-CoV-2 antigens.


Subject(s)
COVID-19 , Viral Vaccines , Adolescent , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Chile , Double-Blind Method , Humans , Immunogenicity, Vaccine , Immunoglobulin G , Middle Aged , SARS-CoV-2 , Vaccines, Inactivated/adverse effects , Young Adult
5.
Front Immunol ; 12: 747830, 2021.
Article in English | MEDLINE | ID: covidwho-1551503

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible of the current pandemic ongoing all around the world. Since its discovery in 2019, several circulating variants have emerged and some of them are associated with increased infections and death rate. Despite the genetic differences among these variants, vaccines approved for human use have shown a good immunogenic and protective response against them. In Chile, over 70% of the vaccinated population is immunized with CoronaVac, an inactivated SARS-CoV-2 vaccine. The immune response elicited by this vaccine has been described against the first SARS-CoV-2 strain isolated from Wuhan, China and the D614G strain (lineage B). To date, four SARS-CoV-2 variants of concern described have circulated worldwide. Here, we describe the neutralizing capacities of antibodies secreted by volunteers in the Chilean population immunized with CoronaVac against variants of concern Alpha (B.1.1.7), Beta (B.1.351) Gamma (P.1) and Delta (B.617.2). Methods: Volunteers enrolled in a phase 3 clinical trial were vaccinated with two doses of CoronaVac in 0-14 or 0-28 immunization schedules. Sera samples were used to evaluate the capacity of antibodies induced by the vaccine to block the binding between Receptor Binding Domain (RBD) from variants of concern and the human ACE2 receptor by an in-house ELISA. Further, conventional microneutralization assays were used to test neutralization of SARS-CoV-2 infection. Moreover, interferon-γ-secreting T cells against Spike from variants of concern were evaluated in PBMCs from vaccinated subjects using ELISPOT. Results: CoronaVac promotes the secretion of antibodies able to block the RBD of all the SARS-CoV-2 variants studied. Seropositivity rates of neutralizing antibodies in the population evaluated were over 97% for the lineage B strain, over 80% for Alpha and Gamma variants, over 75% for Delta variant and over 60% for the Beta variant. Geometric means titers of blocking antibodies were reduced when tested against SARS-CoV-2 variants as compared to ancestral strain. We also observed that antibodies from vaccinated subjects were able to neutralize the infection of variants D614G, Alpha, Gamma and Delta in a conventional microneutralization assay. Importantly, after SARS-CoV-2 infection, we observed that the blocking capacity of antibodies from vaccinated volunteers increased up to ten times for all the variants tested. We compared the number of interferon-γ-secreting T cells specific for SARS-CoV-2 Spike WT and variants of concern from vaccinated subjects and we did not detect significant differences. Conclusion: Immunization with CoronaVac in either immunization schedule promotes the secretion of antibodies able to block SARS-CoV-2 variants of concern and partially neutralizes SARS-CoV-2 infection. In addition, it stimulates cellular responses against all variants of concern.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccines, Inactivated/immunology , Adolescent , Adult , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/blood , Humans , Interferon-gamma/immunology , Middle Aged , Neutralization Tests , SARS-CoV-2/classification , Vaccination , Young Adult
6.
Front Immunol ; 12: 742914, 2021.
Article in English | MEDLINE | ID: covidwho-1472387

ABSTRACT

Constant efforts to prevent infections by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are actively carried out around the world. Several vaccines are currently approved for emergency use in the population, while ongoing studies continue to provide information on their safety and effectiveness. CoronaVac is an inactivated SARS-CoV-2 vaccine with a good safety and immunogenicity profile as seen in phase 1, 2, and 3 clinical trials around the world, with an effectiveness of 65.9% for symptomatic cases. Although vaccination reduces the risk of disease, infections can still occur during or after completion of the vaccination schedule (breakthrough cases). This report describes the clinical and immunological profile of vaccine breakthrough cases reported in a clinical trial in progress in Chile that is evaluating the safety, immunogenicity, and efficacy of two vaccination schedules of CoronaVac (clinicaltrials.gov NCT04651790). Out of the 2,263 fully vaccinated subjects, at end of June 2021, 45 have reported symptomatic SARS-CoV-2 infection 14 or more days after the second dose (1.99% of fully vaccinated subjects). Of the 45 breakthrough cases, 96% developed mild disease; one case developed a moderate disease; and one developed a severe disease and required mechanical ventilation. Both cases that developed moderate and severe disease were adults over 60 years old and presented comorbidities. The immune response before and after SARS-CoV-2 infection was analyzed in nine vaccine breakthrough cases, revealing that six of them exhibited circulating anti-S1-RBD IgG antibodies with neutralizing capacities after immunization, which showed a significant increase 2 and 4 weeks after symptoms onset. Two cases exhibited low circulating anti-S1-RBD IgG and almost non-existing neutralizing capacity after either vaccination or infection, although they developed a mild disease. An increase in the number of interferon-γ-secreting T cells specific for SARS-CoV-2 was detected 2 weeks after the second dose in seven cases and after symptoms onset. In conclusion, breakthrough cases were mostly mild and did not necessarily correlate with a lack of vaccine-induced immunity, suggesting that other factors, to be defined in future studies, could lead to symptomatic infection after vaccination with CoronaVac.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Vaccines, Inactivated/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/pathology , Chile , Comorbidity , Female , Humans , Immunization Schedule , Immunogenicity, Vaccine/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Interferon-gamma/immunology , Lymphocyte Count , Male , Middle Aged , Severity of Illness Index , Vaccination , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL